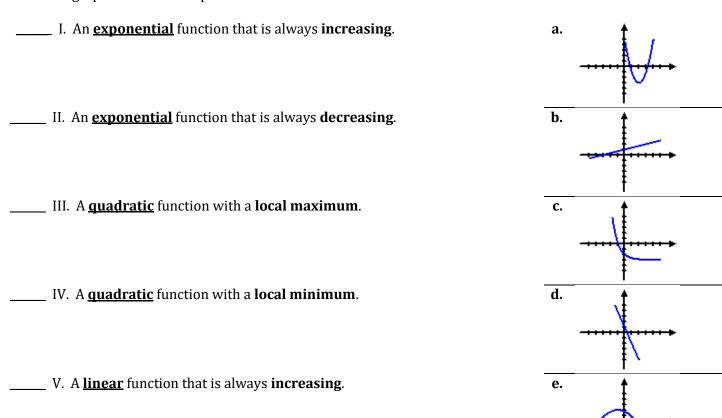
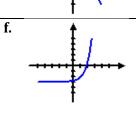

Sec 5.1 – Identifying the Function <u>Linear, Quadratic, or Exponential Functions</u>

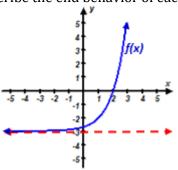
Name:


GRAPHICAL EXAMPLES



2. Match each graph with its description.

_____ VI. A <u>linear</u> function that is always **decreasing**.

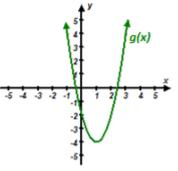

- 3. Which is the only type of function below that has an asymptote when graphed?
 - A. Linear Function

- B. Quadratic Function
- C. Exponential Function
- 4. Which is the only type of function below that could have a local maximum?
 - A. Linear Function

- B. Quadratic Function
- C. Exponential Function

5. Describe the end behavior of each of the function below.

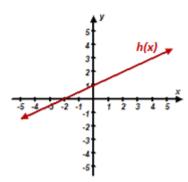
A.



Name:_____

As $x \to \infty$, $f(x) \to \underline{\hspace{1cm}}$

B.



Name:_____

As
$$x \to -\infty$$
, $g(x) \to \underline{\hspace{1cm}}$

As $x \to \infty$, $g(x) \to \underline{\hspace{1cm}}$

C.

Name:_____

As
$$x \to -\infty$$
, $h(x) \to \underline{\hspace{1cm}}$

As $x \to \infty$, $h(x) \to$

- 6. Which is the only function that might have end behavior such that as x approaches infinity, f(x) approaches 4?
 - A. Linear Function

- B. Quadratic Function
- C. Exponential Function
- 7. Which is the only function below that might have end behavior such that:

• As
$$x \to -\infty$$
, $f(x) \to \infty$

• As
$$x \to \infty$$
, $f(x) \to \infty$

A. Linear Function

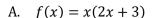
- B. Quadratic Function
- C. Exponential Function
- 8. Which is the only function below that might have end behavior such that:

• As
$$x \to -\infty$$
, $f(x) \to -\infty$

• As
$$x \to \infty$$
, $f(x) \to \infty$

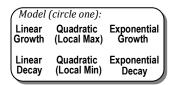
A. Linear Function

- B. Quadratic Function
- C. Exponential Function
- 9. Which is the only function below that might have end behavior such that:

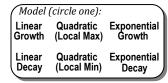

• As
$$x \to -\infty$$
, $f(x) \to -\infty$

• As
$$x \to \infty$$
, $f(x) \to -\infty$

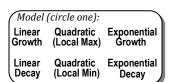
A. Linear Function

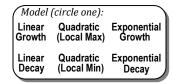

- B. Quadratic Function
- C. Exponential Function

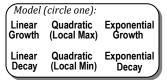
10. Based on the function given identify which description best fits the function.



Model (circle one):
Linear Quadratic Exponential
Growth (Local Max) Growth
Linear Quadratic Exponential
Decay (Local Min) Decay


D.
$$m(x) = 3 \cdot (2)^x + 1$$


B.
$$g(x) = 3(1-2x) - 4$$


E.
$$p(x) = 2 - 3x^2 + x$$

C.
$$h(x) = 2 + (\frac{1}{2})^x$$

F.
$$q(x) = \frac{1}{2}x - 1$$

11. Based on the partial set of values given for a function, identify which description best fits the function.

x	0	1	2	3	4
a(x)	1	5	9	13	17

x	1	2	3	4	5
b(x)	1	2	1	- 2	- 7

x	1	2	3	4	5
c(x)	0	2	6	14	30

Model (circle one):
Linear Quadratic Exponential
Growth (Local Max) Growth
Linear Quadratic Exponential
Decay (Local Min) Decay

x	0	1	2	3	4
d(x)	3	0	-1	0	3

x	1	2	3	4	5
e(x)	65	33	17	9	5

Model (circle one):

Linear Quadratic Exponential Growth

Linear Quadratic Exponential Decay (Local Min)

Decay (Local Min)

Decay

Model (circle one):
Linear Quadratic Exponential
Growth (Local Max) Growth
Linear Quadratic Exponential
Decay (Local Min) Decay

Model (circle one):
Linear Quadratic Growth (Local Max)
Linear Quadratic Exponential Decay (Local Min)

Exponential Decay